11 1)

North Yorkshire County Council

CATTERICK TRAFFIC MODEL Traffic Forecasting Report - Future Forecast Years

North Yorkshire County Council

CATTERICK TRAFFIC MODEL

Traffic Forecasting Report - Future Forecast Years

TYPE OF DOCUMENT (VERSION) CONFIDENTIAL

PROJECT NO. 70040744
OUR REF. NO. V01

DATE: APRIL 2020

North Yorkshire County Council

CATTERICK TRAFFIC MODEL

Traffic Forecasting Report - Future Forecast Years

WSP

Three White Rose Office Park
Millshaw Park Lane
Leeds
LS11 ODL
Phone: +44 1133956200
WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	For issue			
Date	April 2020			
Prepared by	Sam Callaghan			
Signature	SC			
Checked by	Narendra Sadhale			
Signature	NSS			
Authorised by	Richard Crossley			
Signature	RC			
Project number	70040744			
Report number	01			
File reference				

This Report is presented to North Yorkshire County Council and may not be used or relied on by any other person or by the client in relation to any other matters not covered specifically by the scope of this Report.

Notwithstanding anything to the contrary contained in the Report, WSP Limited is obliged to exercise reasonable skill, care and diligence in the performance of the services required by 'North Yorkshire County Council' and WSP Limited shall not be liable except to the extent that it has failed to exercise reasonable skill, care and diligence, and this report shall be read and construed accordingly.

This North Yorkshire County Council Report has been prepared by WSP Limited. No individual is personally liable in connection with the preparation of this Report. By receiving this Report and acting on it, the client or any other person accepts that no individual is personally liable whether in contract, tort, for breach of statutory duty or otherwise.

CONTENTS

1. INTRODUCTION 5
1.1. BACKGROUND 5
1.2. STRUCTURE OF REPORT 5
1.3. REFERENCE TO PREVIOUS REPORTS 5
2. OVERVIEW OF BASE YEAR MODEL 6
2.1. BACKGROUND 6
2.2. STUDY AREA 6
2.3. MODELLED PERIODS 7
2.4. ASSIGNMENT USER CLASSES 7
2.5. MODEL PLATFORM 7
3. OVERVIEW OF FORECASTING PROCESS 8
3.1. OVERVIEW 8
3.2. FORECAST YEARS AND TIME PERIODS 8
3.3. OVERVIEW OF DEMAND FORECASTING PROCEDURES 8
3.4. SCENARIO BUILDING 9
3.5. DEVELOPMENT TRIP ENDS 10
4. FORECASTING INPUTS AND ASSUMPTIONS 11
4.1. BACKGROUND 11
4.2. TRAFFIC FORECASTING 11
4.3. ASSESSMENT METHODOLOGY AND DEVELOPMENT LOG 14
4.4. LEVEL CROSSING DOWNTIMES 14
4.5. VALUES OF TIME AND OPERATING COST 14
5. MATRIX DEVELOPMENT 16
5.1. DEVELOPMENT TRAFFIC 16
5.2. MATRIX TOTALS 18
6. TRAFFIC MODEL RESULTS 20
6.1. OVERVIEW 20
6.2. RESULTS SUMMARY FOR 2035 DM MODE RUN 21
6.3. JOURNEY TIMES (2035 DM) 25
6.4. RESULTS SUMMARY FOR 2035 DS MODEL RUN 28
6.5. COMPARISON OF JOURNEY TIME RESULTS 2035 DS 31
6.6. HIGH LEVEL IDENTIFICATION OF POTENTIAL JUNCTIONS WITH OPERATIONAL ISSUES 34
7. SUMMARY 36
TABLES
Table 3-1 - Uncertainty Log: Classification of Inputs 9
Table 4-1 - AM, IP and PM Peak forecast growth factors: 2019-2035 12
Table 4-2 - Future Monetary Cost Values, 2035 14
Table 5-1 -Trip generation - 2035 DM scenario 16
Table 5-2 -Trip generation - Proposed developments 2035 DS scenario 17
Table 5-3-2035 DM Future Year Matrix Totals 18
Table 5-4-2035 DS Future Year Matrix Totals 19
Table 6-1 - Network Performance, 2035 DM scenario 21
Table 6-2 - Network Performance Comparison of 2035 DM with Base year model 22
Table 6-3 - Modelled Journey Time Summary, 2035 DM scenario 25
Table 6-4-Comparison of Journey Times, AM peak hour 26
Table 6-5 - Comparison of Journey Times, IP peak hour 27
Table 6-6 - Comparison of Journey Times, PM peak hour 27
Table 6-7 - Network Performance, 2035 DS scenario 28
Table 6-8 - Network Performance Comparison of 2035 DM with Base year model 28
Table 6-9 - Comparison of Journey Times, AM peak hour, 2035 DS scenario 32
Table 6-10-Comparison of Journey Times, IP peak hour- 2035 DS scenario 33
Table 6-11 - Comparison of Journey Times, PM peak hour - 2035 DS scenario 33
Table 6-12-Junctions identified for operational assessments 35

FIGURES

Figure 2-1 - Study Area 6
Figure 4-1 - AM growth comparison 12
Figure 4-2 - Inter-peak growth comparison 13
Figure 4-3 - PM peak growth comparison 13
Figure 6-1 - Journey Time Routes 21
Figure 6-2 - Flow difference plot for AM peak hour, 2035 DM 23
Figure 6-3 - Flow difference plot for Average IP hour, 2035 DM 24
Figure 6-4 - Flow difference plot for PM peak hour, 2035 DM 24
Figure 6-5 - Flow difference plot for AM peak hour-, 2035 DS 29
Figure 6-6 - Flow difference plot for Average IP hour, 2035 DS 30
Figure 6-7 - Flow difference plot for PM peak hour, 2035 DS 31
Figure 6-8 Location of junctions identified 35

APPENDICES

APPENDIX A
DEVELOPMENT LOG
APPENDIX B
TRICS REPORT
APPENDIX C
TRAFFIC GROWTH
APPENDIX D
TAFFIC FLOW PLOTS

APPENDIX E

JOURNEY TIME GRAPHS - 2035 DM-BASE
APPENDIX F
JOURNEY TIME GRAPHS 2035DS-2035DM

1. INTRODUCTION

1.1. BACKGROUND

Richmondshire District Council (RDC) is preparing a Review of the Local Plan which will include a Masterplan for the growth of Catterick Garrison.

RDC wishes to test the transport impacts of the proposed development of the sites in Catterick Garrison. The Strategic Highway Model is required to assist NYCC's transport and development teams to review and determine the transport impacts of proposed Garrison developments

North Yorkshire County Council commissioned its transport consultants, WSP, to develop a new Strategic Highway Model (SHM) for the area covering the areas of covering the areas of Easby, Hipswell, Colburn, Scotton, Tunstall, Vimy Barracks located to the south of Richmond town centre and Catterick.

WSP has completed the 2019 base year model built for Catterick Garrison. The details of the base year model build are included in the of a Local Model Validation Report.

As part of the commission, along the base year model build, WSP was commissioned to build two future year models based on the Key stages agreed in the Inception Report (v04, 2018). The key stages are

B Stage 2 - Development of Reference Forecast Future year model
A Reference Forecast Future year model has been developed as a basis for testing the forecast This model run is referred to as 2035 Do-Minimum (2035 DM) in this report.
B Stage 3- Development of Future year test 1
This model run is referred to as 2035 Do-Something (2035 DS) in this report.
This report summarises the results for the 2035 DM and 2035 DS future year test and highlights the potential high-level impact the on the performance of the local highway network.

1.2. STRUCTURE OF REPORT

The subsequent content of this report is structured as follows: (to be updated)
B Chapter 2 - Overview of 2019 base year model;
B Chapter 3 - Overview of forecasting process;
B Chapter 4 - Forecasting inputs and assumptions;
B Chapter 5 - Matrix changes.
B Chapter 6-2035 Traffic model results, including operational analysis, journey time results and delay.
B Chapter 7 - Summary

1.3. REFERENCE TO PREVIOUS REPORTS

The following reports previously shared with NYCC and RDC are referenced in this report where appropriate.

B 2019 Base model LMVR - issued March 2020
B Inception Report - June 2018

2. OVERVIEW OF BASE YEAR MODEL

2.1. BACKGROUND

This section of the report provides a brief overview of the validated Base Year Traffic Model (2019) and its principal features. A more comprehensive description of the model development and validation process can be found in the Local Model Validation Report, March 2020.

2.2. STUDY AREA

A study area has been defined to cover Catterick Garrison and Catterick Village as shown in Figure 2-1.

The area highlighted in green shows the extents of the core modelling area (simulation area) where the highway network and junctions have been coded in detail. It provided a sufficient area of detailed modelling to allow developments to be rigorously tested within and in proximity to areas of interest.

The area highlighted in blue shows extents of the immediate (local) buffer modelling area where the highway network has been coded in less detail. Including these areas within the local buffer area allows coverage of highway network in the adjacent metropolitan areas to adequately model them as destination choices. The remainder of Richmondshire District forms an area of skeletal network coverage (strategic roads only) to allow connection to the rest of the country and other areas in the country.

It should be noted that although the junctions outside the simulation area have not been modelled in as much detail, the model will accurately assess route choice. The 'buffer area' thus provides an accurate assessment of route choice to / from the simulation area but does not provide a detailed assessment of those junctions.

Figure 2-1 - Study Area

WSP

APRIL 2020
Page 6 of 37

The simulation area extends east of Catterick Village up to the River swale and up to Brompton on Swale to the north. To the south the simulation area extends up to south of Moor Lane covering the villages of Scotton and Tunstall. To the west the simulation area extends up to Range Road covering the areas of Vimy Barracks and the Catterick Golf Club.

2.3. MODELLED PERIODS

As agreed with NYCC, the models have been developed for the base year 2019 that represent three peak hours for an average weekday, which covers:

- AM peak hour model (0730-0830);
- Average inter-peak period model (1000-1600); and
- PM peak hour model (1630-1730).

2.4. ASSIGNMENT USER CLASSES

In accordance with Section 2.6 of WebTAG M3.1Error! Bookmark not defined., five vehicle/user classes have been modelled in the Catterick Traffic Model as below:

B Car-Employer Business;
B Car-Commuting;
B Car - Others;
B Light Goods Vehicles (LGV); and
B Heavy Goods Vehicles (HGV) including OGV1, OGV2

2.5. MODEL PLATFORM

The validation of the Catterick Traffic Model has been undertaken using SATURN v11.4.07H software to fulfil the objectives identified in the brief and is consistent with the version of the software used in the 2019 Base year model.

SATURN is the most established highway assignment modelling software in the UK due to its enhanced simulation routines.

Further, it has the ability to interact with other software packages, including software focussed on demand modelling and GIS software for presentation purposes.

3. OVERVIEW OF FORECASTING PROCESS

3.1. OVERVIEW

This chapter provides an overview of the traffic forecasting processes used in creating the 2035 DoMinimum scenario. The approach to forecasting was outlined in the Proposed Model Scope and Fees Report submitted in July 2016 and Inception note in June 2018 which was agreed with NYCC and SDC.

Forecast year models are used to predicts the impact of the transport schemes and developments. The modelling software and version used I the same as the base year model to align with the consistency of modelling parameters.

3.2. FORECAST YEARS AND TIME PERIODS

The base year for the Catterick Model is 2019, as defined in the LMVR.
The three modelled time periods (summarised in section 2.3 of this report) identified in the base year model remained unchanged in the forecasting.

The forecast year of 2035 has been developed as agreed in the inception report. Two scenarios have been developed as part of the 2035 forecast year assessment; namely

B Stage 2 - Development of Reference Forecast Future year model
A Reference Forecast Future year model has been developed as a basis for testing the forecast
This model run is referred to as 2035 Do-Minimum (2035 DM) in this report.

B Stage 3- Development of Future year test 1
Develop a future year model based on the above Reference Forecast Future year model plus the Garrison growth to identify its likely effects on the highway network.
This model run is referred to as 2035 Do-Something (2035 DS) in this report.

3.3. OVERVIEW OF DEMAND FORECASTING PROCEDURES

The demand forecasting procedure involves applying growth to the validated base year demand matrices. Growth in demand is a reflection of local planning information and national forecasts and as such TEMPRO growth for car trips whilst NTM growth was applied to goods vehicle trips.
Forecast Time Periods and Years
The forecasting is intended to estimate the impact on the highway network of major developments mostly likely to be developed by year 2035.

Future year demand estimates have been based on a number of elements, including:
B The general growth in travel demands due to changes in population, employment, income and car ownership;
B The specific changes in travel associated with new developments; and
B Changes in goods vehicle movements relating to future land use patterns and economic activity.
Future year growth assumptions were therefore derived using data from a number of sources, including:

B Planning data on developments and transport schemes from provided by NYCC and RDC to be used in the definition of future year scenarios;
B The latest (version 7.2) National Trip End Model (NTEM) and TEMPRO software;
B Transport Assessments (TA) for large developments;
B The National Transport Model (NTM) for goods vehicle growth.

3.4. SCENARIO BUILDING

The process of defining scenarios was aided by the creation of a structured uncertainty log, as recommended in WebTAG Unit M4 - 'Forecasting and Uncertainty'. This guidance recognises the uncertainty associated with future assumptions on transport demand (i.e. residential and employment developments) and supply (network changes) and provides advice on how this might be accommodated in traffic growth projections. WebTAG Unit M42 recommends categorising each identified development or intervention in terms of the probability of it being delivered; this is achieved using the definitions shown below in Table 3-1.

Table 3-1 - Uncertainty Log: Classification of Inputs

Probability of the Input	Status		
(1) Near Certain: The outcome will happen or there is a high probability that it will happen	Intent announced by proponent to regulatory agencies Approved development proposals Projects under construction		
(2) More than Likely:	Submission of planning or consent application imminent		
The outcome is likely to happen but there			
is some uncertainty	Development application within the consent process		
(3) Reasonably foreseeable:	Identified with a development plan, not directly associated with the transport strategy / scheme but may occur if the strategy / scheme is implemented, Development conditional on the transport strategy / scheme proceeding Or, a committed policy goal, subject to tests (e.g. $>$ deliverability) of wose outcomes are subject to significant uncertainty		
The outcome may happen, but there is a significant uncertainty			
(4) Hypothetical:			
There is considerable uncertainty whether			
the outcome will ever happen			Conjecture based upon currently available information, Discussed on a
:---			
conceptual basis, One of a number of possible inputs in an initial			
consultation process, Or, a policy aspiration			

In keeping with this guidance, RDC provided WSP a development log which summarised the "most likely" and "near certain" sites within the detailed study area for residential and employment land use to be developed in the Study area by 2035.

Other than the highway improvements that will be provided as part of a development, there were no standalone highway improvements identified for modelling in the 2035 DM test scenario.

3.5. DEVELOPMENT TRIP ENDS

The development log was provided by RDC which provided the information on the details of each site and the planning status of the various sites.

For the sites which had planning applications the relevant transport documents were downloaded from the RDC's planning portal and the trip rate/ trips were identified where available.

The development log summarises the trip rate and the development buildout rates for each of the developments. The log also categorised the developments based on the following parameters.
B Development type - Residential / Employments
B Planning Status - permission / allocation
For developments which did not provide information on trip rates (including the Inter Peak), TRICS, an industry standard program developed to estimate trip ends from various land use types, was used. These trip rates were agreed with NYCC/ RDC.
Appendix A summarises the developments in the 2035 DM and 2035 DS scenarios and the TRICS reports are included in Appendix B.

4. FORECASTING INPUTS AND ASSUMPTIONS

4.1. BACKGROUND

The previous chapter described the processes adopted for determining the developments that were mostly likely to be completed by the forecast year of 2035. This chapter sets out the assumptions and inputs into these forecasts.

4.2. TRAFFIC FORECASTING

The demand matrices for the forecast year have been derived by merging the background traffic matrices with the development traffic matrices. TEMPRO growth factors have been applied to the calibrated base year matrices at the origin-destination level to create background traffic matrices.

Development trip matrices have then been developed by estimating trip generation of developments by land use and applying trip distributions from a set of donor zones with similar land uses. The methodology for development trips is included in Section 3 of this report.
The model development process considers one forecast year scenario (2035) for the AM, IP and PM peak hour assessments. The 2035 forecast traffic levels were estimated by applying growth factors to the 2019 base model matrices. These growth factors were derived from the Department for Transport's TEMPRO program (Trip End Model Presentation Program) Version 7.2.

The overall traffic growth (i.e. including development related traffic) between the 2019 base year and 2035 forecast year the time periods assessments has been controlled to TEMPRO in the 2035 DM scenario.

For the 2035 DS scenario the forecasts are not controlled to TEMPRO to allow a robust assessment of the impact of development on the highway network.

Where there have been consented developments agreed, TEMPRO factors have been adjusted to account for these added trips, before being controlled to TEMPRO.

The growth factors presented in the following table provide an indication of the growth at different geographical levels. The growth factors as applied to the 2019 base year matrices are presented in Appendix C.

Table 4-1 compares the growth factors for Richmond against counties in North Yorkshire and national forecasts.

Table 4-1 - AM, IP and PM Peak forecast growth factors: 2019-2035

			AM	IP		PM
	Oriq.	Dest.	Oria.	Dest.	Oriq.	Dest.
Hambleton	1.0421	1.0826	1.0788	1.0763	1.072	1.0456
Harroaate	1.0703	1.0861	1.094	1.0922	1.0796	1.0696
Richmondshire	1.0535	1.0829	1.079	1.0776	1.073	1.054
Humberside	1.1155	1.116	1.1229	1.1229	1.1105	1.1103
North Yorkshire	1.0824	1.0885	1.095	1.0946	1.0834	1.0793
West Yorkshire	1.1435	1.1411	1.1624	1.1625	1.141	1.1425
South East	1.1224	1.1265	1.1661	1.1659	1.1279	1.1256
South West	1.1116	1.1116	1.1311	1.1311	1.1105	1.1105
North East	1.1233	1.1233	1.1251	1.1251	1.1174	1.1174
North West	1.1137	1.1137	1.1209	1.1209	1.1091	1.1091

Orig. $=$ Origins; Dest. $=$ Destinations
Figure 4-1, Figure 4-2 and Figure 4-3 summarise the comparison of the growth for the Richmondshire area in comparison to the national average for the AM peak, inter-peak and PM Peak respectively. Overall, it can be observed that the growth projections for Richmondshire district are lower than the projections for the North Yorkshire County for the period 2019-2035.

Figure 4-1 - AM growth comparison

WSP
APRIL 2020
Page 12 of 37

Figure 4-2 - Inter-peak growth comparison

Figure 4-3 - PM peak growth comparison

The traffic forecasts do not make any adjustments for potential mode shift as a result of transport policy interventions. Furthermore, it has been assumed that the full forecast increases in traffic will occur in the peak periods and no account of the potential for peak spreading has been taken (peak spreading occurs when drivers alter their travel patterns to avoid the congested peak hours, resulting in traffic growth occurring outside of the peaks).

4.3. ASSESSMENT METHODOLOGY AND DEVELOPMENT LOG

The assessment considers only one forecast year - 2035 for the AM, IP and PM peak hour assessments.

4.4. LEVEL CROSSING DOWNTIMES

There are no existing level crossings in the Catterick Traffic Base model. Hence there are no change in their representation in this test.

4.5. VALUES OF TIME AND OPERATING COST

SATURN uses a function of generalised cost (in form of Monetary time and distance) to normalise time, distance and monetary charges to determine the route on which a vehicle is assigned.

Monetary time (pence per minute) and distance (pence per kilometre) values used for the 2035 DoMinimum model were derived from WebTAG 3.5.61 and WebTAG Unit M3.12. Table 4-2 below shows the values of time \& operating costs for both 2019 base and 2035 future year models.

Table 4-2 - Future Monetary Cost Values, 2035

Vehicle Type	Purpose	Time Related Cost (PPM)			Distance Related Cost (PPK)		
		AM	IP	PM	AM	IP	PM
Base Year (2019) values							
Car	Employer's Business	31.01	31.78	31.46	14.20	14.20	14.20
	Commute	20.80	21.14	20.87	6.71	6.71	6.71
	Other	14.35	15.29	15.03	6.71	6.71	6.71
LGV	Average	21.92	21.92	21.92	15.28	15.28	15.28
HGV*	Average	51.19	51.19	51.19	48.89	48.89	48.89

${ }^{1}$ WebTAG 3.5.6 refers to the UK Department for Transport's web-based guidance on values of Time and Vehicle Operating Costs http://webarchive.nationalarchives.gov.uk/20140304105410/http:/www.dft.gov.uk/webtag/documents/expert/pdf/U3_5_6-Jan-2014.pdf
${ }^{2}$ WebTAG M3.1 refers to the UK Department for Transport's web-based multimodal guidance on appraising transport projects and proposals.
https://www.gov.uk/government/publications/webtag-tag-unit-m3-1-highway-assignment-modelling

Future Year Reference Forecast (2035) values							
Car	Employer's Business	39.71	40.69	40.28	12.21	12.21	12.21
	Commute	26.63	27.06	26.72	5.32	5.32	5.32
	Other	18.37	19.57	19.24	5.32	5.32	5.32
LGV	Average	28.06	28.06	28.06	14.35	14.35	14.35
HGV*	Average	65.53	65.53	65.53	52.69	52.69	52.69

PPK: Pence per kilometre PPM: Pence per minute
*HGV PPM values are doubled in line with the base year approach and guidance in WebTAG unit M3.1 Section 2.8.8

The WebTAG databook only relates to the drivers time and does not take into account the influence of freight operators on the routing of their vehicles, which can affect HGV movements.
Hence, guidance in WebTAG M3.1 has been used for estimating the monetary values for HGVs.

5. MATRIX DEVELOPMENT

5.1. DEVELOPMENT TRAFFIC

The development traffic trip generation has been mainly based on development log provided by RDC and the trip rates agreed with NYCC. The number of trips generated by each of the anticipated developments in the 2035 DM scenario is summarised in Table 5-1 below.
Table 5-1 -Trip generation - 2035 DM scenario

Dev Ref. No.	Site Name/Description	AM		IP		PM	
		Arrive	Depart	Arrive	Depart	Arrive	Depart
378	Land North Le Cateau School	21	59	29	28	54	34
386	Land NE Somme Barracks	21	59	29	28	54	34
120	Somerset Close	6	15	7	7	14	6
121	Gough Road	5	11	5	5	10	5
124	Arras Lines	4	10	5	5	10	4
157	Former Colburn Pipework's Site	24	63	33	31	61	31
	(Phase 2) Colburndale Phase II				2	2	4
217	Land E of Byng Road	2	4	2	2		
26	Land E Cookson Way	16	38	18	18	35	14
12	Hipswell Croft	9	25	11	11	25	10
122	Land North of Heatherdene Road	10	24	11	11	23	10
388	Land North of Colburn Business	39	35	29	38	19	40
7	Land North West of Manor House	1	3	2	2	3	1
21	Land West of Bishops Way	3	9	4	4	8	5
227	Phase 2 Gatherley Rd	30	78	40	38	75	43
319	Robin Hood Farm	5	12	5	5	12	5

The number of trips generated by each of the anticipated developments in the 2035 DS scenario is summarised in Table 5-2 below.

Table 5-2 -Trip generation - Proposed developments 2035 DS scenario

Dev Ref. No.	Site Name/Description	AM		IP		PM	
		Arrive	Depart	Arrive	Depart	Arrive	Depart
359	Land North of Haig Road	13	36	16	15	31	19
356	Land East of Plumer Rd(Old F N C Shop)	1	2	1	1	2	1
357	Land off Downholme Road	3	8	4	4	7	4
367	Land adj to Carnegill Hill	1	2	1	1	2	1
366	Munster Barracks	139	36	60	58	16	144
363	Land South Jutland Road	9	25	11	11	21	13
364	Former Civil Service Club	6	16	7	7	13	8
365	Ypres Lines	101	66	183	180	225	215
377	Perone Lines	360	177	373	386	159	278
372	Former careers Offices	12	33	14	14	28	18
371	Duchess of Kent Hospital	15	38	19	18	36	18
376	Scotton Park	21	55	28	26	53	27
403	TMP (Horne Rd/Catterick Rd)	7	20	9	8	17	11
383	Pinhill Mess	8	22	10	9	19	12
379	Land West of Harley Crescent	2	5	2	2	4	3
382	Land N Loos Road	12	34	15	15	30	19
404	Land S Loos Rd	20	51	26	24	49	25
362	Land East of Richmond Road	13	35	16	15	30	19
361	Land Opp Haig Road	18	46	23	22	43	22
381	Ext Somme Barracks	26	7	11	11	3	27
368	Land West Sports \& leisure centre	7	18	8	8	16	10
369	Land North Catterick Road	2	5	2	2	5	3
370	Former Recreation Land, Shute Rd	16	34	74	71	97	98
380	Welfare Unit Offices	3	9	4	4	8	5
385	Land W Cleveland Road	5	14	6	6	12	8
406	Extension to Marne Barracks	90	23	38	37	11	93
13	Glencroft, Hipswell	3	7	3	3	6	4
69	Land S Oaktree Avenue, Scotton	9	25	11	11	22	13
82	Land W St Johns Rd, Hipswell	14	38	17	16	33	21
106	Land N of Albermarle Drive, Colburn	17	43	21	21	41	21

128	Land E of Walkerville, Brough with St Giles	14	37	18	18	35	18
158	Former Recreation Ground, Colburn	12	32	14	14	28	17
185	Land adj Lidl, Colburn	4	10	4	4	8	5
186	Land South of Leisure Centre, Colburn	2	6	3	3	5	3
401	Colburndale Phase 3 Housing	4	10	5	4	9	6
284	Land East of Walkerville, Colburn	14	40	18	17	34	21
339	Land South Colburn Business Park, Colburn	76	33	33	30	37	80
387	Land to centre Colburn Business Park	40	11	13	12	10	35
324	Land West of Garth Meadows	3	7	3	3	6	4
31	Land at Catterick Central Junction	49	49	49	49	0	0
142	Land West of Tunstall Road	11	30	13	13	26	16
175	Land E Gatherley Rd	61	27	26	24	30	64
322	Land at Station Rd/Gatherley Rd	21	6	7	6	5	18

5.2. MATRIX TOTALS

The outturn future year matrix totals for 2035 DM scenario are presented in Table 5-3 below. It must be noted that these figures do not include intra-zonal trips.
The 2035 DM matrices were constrained to TEMPRO growth factor as summarised in section 4.2 of this project.

Table 5-3-2035 DM Future Year Matrix Totals

User Class	AM		IP		PM				
	Base	2035 DM	\% Diff	Base	2035 DM	\% Diff	Base	2035 DM	\% Diff
1 - Car Work	3,331	3,679	10.46%	4,558	5,010	9.93%	5,747	6,332	10.19%
2 - Car Commute	4,600	4,946	7.52%	2,118	2,257	6.59%	4,550	4,874	7.10%
3 - Car Other	2,520	2,765	9.73%	4,154	4,565	9.89%	3,906	4,264	9.16%
4 - LGV	1,775	2,148	21.01%	1,953	2,364	21.03%	1,774	2,147	21.02%
5 - HGV	2,101	2,141	1.88%	2,540	2,588	1.88%	2,002	2,041	1.94%
Total	14,327	15,679	9.44%	15,322	16,806	9.69%	17,979	19,645	9.27%

The overall levels of traffic growth for Catterick between the 2019 and 2035 generated by TEMPRO were 8.2% (AM peak), 8.2% (IP) and 8.4% (PM peak). The committed/proposed developments in Catterick marginally exceed the TEMPRO growth figures.

The outturn future year matrix totals for 2035 DS scenario are presented in Table 5-4 below. It must be noted that these figures do not include intra-zonal trips.

Table 5-4-2035 DS Future Year Matrix Totals

User Class	AM		IP		PM				
	Base	2035 DS	\% Diff	Base	2035 DS	\% Diff	Base	2035 DS	\% Diff
1 - Car Work	3334	4,184	25.49%	4538	5,497	21.15%	5745	7,011	22.04%
2 - Car Commute	4603	6,235	35.45%	2157	2,873	33.22%	4528	5,717	26.26%
3 - Car Other	2511	3,600	43.40%	4150	6,036	45.43%	3909	5,614	43.61%
4 - LGV	1775	2,165	21.99%	1952	2,379	21.86%	1778	2,165	21.76%
5 - HGV	2107	2,194	4.17%	2546	2,633	3.42%	2002	2,079	3.85%
Total	14329	18378	28.26%	15343	19418	26.56%	17962	22,585	25.74%

The overall levels of traffic growth for Catterick between the 2019 and 2035 generated by TEMPRO were 8.2% (AM peak), 8.2% (IP) and 8.4% (PM peak). The committed/proposed developments in Catterick exceed the TEMPRO growth figures

6. TRAFFIC MODEL RESULTS

6.1. OVERVIEW

The traffic model has been run for the 2035 DM and 2035 DS scenarios and analysed to produce a series of outputs to compare with the 2019 base year model.

This chapter summarises the analysis for both the scenarios is summarised in this chapter and covers the following aspects.

B Overall network performance statistics;
B Traffic flow difference;
B Journey times; and
B Identification of junctions with potential operational issues.

6.1.1. Overall Traffic Model Network Performance Statics

Queues and travel times and speeds are used as indicators of overall network performances, explained as:

B Travel Distance Travelled - Total distance travelled across the network by all vehicles in the model during the modelled time period;
B Total Travel Time - Total journey time of all vehicles within the model during the modelled time period;
B Transient Queueing - Queues that occur at junctions operating within their designed capacity; for example, vehicles stopping momentarily at a give-way line, or during one traffic signal cycle;
is Over-Capacity Queueing - Queues that occur due to there being more traffic than there is network capacity to deal with; for example, traffic held for more than one cycle at a traffic signal junction;
B Total Trips on Network - The total number of vehicles travelling on the network in the modelled time period. The total number of trips do not include intra-zonal trips

6.1.2. Traffic flow difference

Traffic flow difference plots are produced for the following scenarios to show the impact of the forecasted developments
B For 2035 DM scenario - Difference plots showing the difference between 2035DM and the Base year model for the time periods assessed.
B For 2035 DS scenario - Difference plots showing the difference between 2035DS and 2035DM for the time periods assessed.

6.1.3. Journey times

As part of the 2019 Base year model development a total of 5 bi-directional journey time routes were defined which cover all the key routes within the study area.
The journey times along these routes has been estimated from the 2035 DM and 2035 DS model runs which takes into account the changes in network due to proposed developments, traffic flows and associated delays.

The coverage of the journey time routes within Catterick is shown in Figure 6-1.
Figure 6-1 - Journey Time Routes

The journey time difference plots are produced for the following scenarios to show the impact of the forecasted developments on individual journey times for each route
B For 2035 DM scenario - Difference plots showing the difference between 2035DM and the Base year model for the time periods assessed.
B For 2035 DS scenario - Difference plots showing the difference between 2035DS and 2035DM for the time periods assessed.

6.2. RESULTS SUMMARY FOR 2035 DM MODE RUN

This section summarises the results for the 2035DM model run as per the parameters outlined in section 6.1 above.
6.2.1. Network Performance Results (2035 DM)

Table 6-1 summarises the overall network performance statistics as generated by the 2035 DM scenario.

Table 6-1 - Network Performance, 2035 DM scenario

Peak Hour	Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over-Capacity Queueing (pcu hr)	Total Trips on Network (pcu)
AM Peak	2035 DM	62705.9	988.1	158.6	0	18461.5
IP	2035 DM	64180.5	920.3	129.4	0	20147.1
PM Peak	2035 DM	72302.4	1085.8	167.9	0	22309.9

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only.

The results show that in the 2035 DM scenario, the PM peak hour generates the highest total distance travelled, total trips on the network, total travel time and transient queueing, compared to the AM and IP peak hour.

Table 6-2 below summarises the overall network performance statistics as generated by the 2035 DM compared with the 2019 Base year. The total trips do not include intra-zonal trips.

Table 6-2 - Network Performance Comparison of 2035 DM with Base year model

Peak Hour	Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	Over- Capacity Queueing (pcu hr)	Total Trips on Network (pcu)
AM Peak	2019 Base year	58129.7	905.3	140.7	0	17058.1
	2035 DM	62705.9	988.1	158.6	0	18461.5
	Difference	7.9%	9.1%	12.7%	0.0%	8.2%
IP	2019 Base year	59290.1	854.9	117.8	0	18623.8
	2035 DM	64180.5	920.3	129.4	0	20147.1
	Difference	8.2%	7.7%	9.8%	0.0%	8.2%
PM Peak	2019 Base year	67069.5	991.6	149.4	0	20581.3
	2035 DM	72302.4	1085.8	167.9	0	22309.9
	Difference	7.8%	9.5%	12.4%	0.0%	8.4%

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only.

The above table shows that, compared to the 2019 Base year results
B There is similar level of growth in total trips in each of the three-time periods. The maximum increase is observed during the PM peak and the lowest is observed during the inter-peak.
B The greatest increase in Total Trips on the Network and Total Travel Time is observed in the PM peak hour.
B The greatest increase in Transient Queuing on the Network is observed in the AM peak hour which is marginally more than the PM peak.
B The greatest increase in Total distance travelled on the Network is observed in the average Inter peak hour.
6.2.2. Traffic Flows Difference (2035 DM)

The impact of the developments included within the 2035 DM scenario compared against the 2019 Base year is shown in the plots below for the study area.

Figure 6-2, Figure 6-3 and Figure 6-4 show the flow difference plots for Catterick for the AM, IP and PM peak hour respectively.

Figure 6-2 - Flow difference plot for AM peak hour, 2035 DM

During the AM peak hour, within the simulation area, it can be observed from the above figure that the highest increase in traffic flow is along Catterick Road eastbound and along Richmond Road.

A local re-routing is predicted north of the simulation area just south of Richmond; this does not influence any re-routing within the simulation area.

The model predicts an increase in the $\mathrm{A} 1(\mathrm{M})$ traffic; this is increase is due to increase is through traffic on the motorway is not a result of the traffic flows from developments included within 2035 DM

During the average Interpeak hour, within the simulation area, it can be observed from the above figure that the highest increase in traffic flow is along Catterick Road eastbound and along Richmond Road.

A local re-routing is predicted north of the simulation area just south of Richmond; this does not influence any re-routing within the simulation area.

The model predicts an increase in the $\mathrm{A} 1(\mathrm{M})$ traffic; this is increase is due to increase is through traffic on the motorway is not a result of the traffic flows from developments included within 2035 DM

Figure 6-3 - Flow difference plot for Average IP hour, 2035 DM

Figure 6-4 - Flow difference plot for PM peak hour, 2035 DM

During the PM peak hour, within the simulation area, it can be observed from the above figure that the highest increase in traffic flow is along Richmond Road Scotton Road corridors and

A local re-routing is predicted north of the simulation area just south of Richmond; this does not influence any re-routing within the simulation area.

The model predicts an increase in the $\mathrm{A} 1(\mathrm{M})$ traffic; this is increase is due to increase is through traffic on the motorway is not a result of the traffic flows from developments included within 2035 DM Traffic flow diagrams from the SATURN traffic model are presented in Appendix D, showing the traffic flows plots for Catterick Garrison and Catterick Village for both 2035DM and the 2035 DS for the AM, IP and PM peaks.

6.3. JOURNEY TIMES (2035 DM)

Journey times for selected routes across Catterick have been summarised for the 2035 DM scenario in Table 6-3.

Table 6-3-Modelled Journey Time Summary, 2035 DM scenario

Route No.	Dir	Description	Len (km)	Modelled Journey Time (hh:mm:ss)		
				AM	IP	PM
1	EB	EB Range Road/A6136	10.5	00:14:14	00:14:17	00:14:54
	WB	WB Range Road/A6136	10.5	00:14:27	00:13:10	00:14:33
2	NB	NB A6136/Scotton Road/Bedale Road	5.1	00:06:53	00:07:00	00:06:58
	SB	NB A6136/Scotton Road/Bedale Road	5.1	00:06:44	00:06:44	00:06:54
3	NB	NB James Lane/Horne Road/Byng Road/Hispwell Rd	6	00:08:31	00:08:06	00:08:10
	SB	SB James Lane/Horne Road/Byng Road/Hispwell Rd	6	00:08:28	00:08:19	00:08:31
4	EB	EB Unnamed Road/Moor Lane/ Tunstall Road	9.6	00:08:41	00:08:40	00:08:43
	WB	WB Unnamed Road/Moor Lane/ Tunstall Road	9.6	00:08:48	00:08:44	00:08:47
5	NB	NB A6136	3.3	00:04:39	00:04:28	00:04:38
	SB	SB A6136	3.3	00:03:37	00:03:36	00:03:38

6.3.1. Comparison of Journey Time Results 2035DM

For 2019 Base year model a total of 5 bi-directional journey time routes were defined which cover all the key routes within the study area.

The journey times along these routes has been estimated from the 2035 DM SATURN model which takes into account the changes in network due to proposed developments, traffic flows and associated delays.

Journey times for selected routes across Catterick in the 2035 DM scenario have been compared with the 2019 Base Year. The differences for the AM, IP and PM peak hours respectively are summarised in the tables below.

Broadly, in the 2035 DM scenario, it can be observed that journey times show an increase against the 2019 base year results.

Table 6-4 - Comparison of Journey Times, AM peak hour

No	Route Description	Dir	Observed Journey Time (hh:mm:ss)			
			2019 Base	2035 DM	Diff (sec)	\%Diff
1	Range Road/A6136	EB	00:13:59	00:14:14	00:00:16	1.9\%
		WB	00:14:14	00:14:27	00:00:12	1.5\%
2	A6136/Scotton Road/Bedale Road	NB	00:06:49	00:06:53	00:00:04	0.9\%
		SB	00:06:40	00:06:44	00:00:04	1.1\%
3	James Lane/Horne Road/Byng Road/Hispwell Road	NB	00:08:16	00:08:31	00:00:15	3.0\%
		SB	00:08:15	00:08:28	00:00:13	2.7\%
4	Unnamed Road/Moor Lane/ Tunstall Road	EB	00:08:40	00:08:41	00:00:01	0.2\%
		WB	00:08:46	00:08:48	00:00:02	0.3\%
5	A6136	NB	00:04:33	00:04:39	00:00:06	2.2\%
		SB	00:03:36	00:03:37	00:00:01	0.4\%

The above table shows that in the AM peak hour, a maximum increase in journey time of 3.0% can be observed for Route 3 NB and a minimum increase of 0.2% is observed for Route 4 (eastbound).
Additionally, it can be observed that in the AM peak hour, a maximum actual increase in journey time of 16 seconds can be observed for Route 1 (eastbound).

No routes show an increase of more than 30 seconds.
No routes showed an overall decrease in journey time:

The table below shows that in the Inter peak hour, a maximum increase in journey time of 3.1% can be observed for Route 3 (southbound); and a minimum increase of 0.1% is observed for Route 4 (both directions).

Additionally, it can be observed from the above table that in the IP peak hour, a maximum actual increase in journey time of 19 seconds can be observed for Route 1 (eastbound) along the A6136 from Range Road.

No routes show an increase of more than 30 seconds and no routes showed an overall decrease in journey time.

Table 6-5 - Comparison of Journey Times, IP peak hour

No	Route Description	Dir	Observed Journey Time (hh:mm:ss)			
			2019 Base	2035 DM	Diff (sec)	\%Diff
1	Range Road/A6136	EB	00:13:58	00:14:17	00:00:19	2.3\%
		WB	00:12:55	00:13:10	00:00:16	2.0\%
2	A6136/Scotton Road/Bedale Road	NB	00:06:58	00:07:00	00:00:02	0.4\%
		SB	00:06:43	00:06:44	00:00:02	0.4\%
3	James Lane/Horne Road/Byng Road/Hispwell Road	NB	00:07:55	00:08:06	00:00:11	2.4\%
		SB	00:08:04	00:08:19	00:00:15	3.1\%
4	Unnamed Road/Moor Lane/ Tunstall Road	EB	00:08:40	00:08:40	00:00:00	0.1\%
		WB	00:08:44	00:08:44	00:00:00	0.1\%
5	A6136	NB	00:04:20	00:04:28	00:00:08	2.9\%
		SB	00:03:35	00:03:36	00:00:01	0.4\%

The table below shows that in the PM peak hour, a maximum increase in journey time of 4.2% can be observed for Route 1 (westbound); and a minimum increase of 0.3% is observed for Route 4 (both directions).
Additionally, it can be observed from the above table that in the PM peak hour, a maximum actual increase in journey time of 35 seconds can be observed for Route 1 (westbound) along the A6136 from Gatherly Road.

No routes showed an overall decrease in journey time.
Table 6-6 - Comparison of Journey Times, PM peak hour

No	Route Description	Dir	Observed Journey Time (hh:mm:ss)			
			2019 Base	2035 DM	Diff (sec)	\%Diff
1	Range Road/A6136	EB	00:14:50	00:14:54	00:00:04	0.4\%
		WB	00:13:58	00:14:33	00:00:35	4.2\%
2	A6136/Scotton Road/Bedale Road	NB	00:06:56	00:06:58	00:00:03	0.7\%
		SB	00:06:47	00:06:54	00:00:07	1.7\%
3	James Lane/Horne Road/Byng Road/Hispwell Road	NB	00:07:58	00:08:10	00:00:12	2.5\%
		SB	00:08:11	00:08:31	00:00:20	4.1\%
4	Unnamed Road/Moor Lane/ Tunstall Road	EB	00:08:42	00:08:43	00:00:02	0.3\%
		WB	00:08:45	00:08:47	00:00:02	0.3\%
5	A6136	NB	00:04:32	00:04:38	00:00:06	2.0\%
		SB	00:03:36	00:03:38	00:00:02	0.8\%

The plots showing comparison of each journey time route between 2019 base and 2035 DM for the AM, IP and PM peak hour are appended in Appendix E.

6.4. RESULTS SUMMARY FOR 2035 DS MODEL RUN

This section summarises the results for the 2035DS model run as per the parameters outlined in section 6.1 above.

6.4.1. Network Performance Results (2035 DS)

Table 6-7 summarises the overall network performance statistics as generated by the 2035 DM scenario.

Table 6-7 - Network Performance, 2035 DS scenario

Peak Hour	Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu $\mathbf{h r})$	Transient Queueing (pcu hr)	Over-Capacity Queueing $\mathbf{(p c u ~ h r) ~}$	Total Trips on Network (pcu)
AM Peak	2035 DS	71157	1248.8	250.5	0	21221.8
IP	2035 DS	71678.3	1197.3	207.2	51.2	22824
PM Peak	2035 DS	80983.2	1421.8	268.2	59.9	25305.4

The results show that in the 2035 DS scenario, the PM peak hour generates the highest total distance travelled, total trips on the network, total travel time and transient queueing, compared to the AM and IP peak hour.

Table 6-8 below summarises the overall network performance statistics as generated by the 2035 DM compared with the 2019 Base year. The total trips do not include intra-zonal trips.

Table 6-8 - Network Performance Comparison of 2035 DM with Base year model

Peak Hour	Scenario	Total Distance Travelled (pcu km)	Total Travel Time (pcu hr)	Transient Queueing (pcu hr)	OverCapacity Queueing (pcu hr)	Total Trips on Network (pcu)
AM Peak	2035 DM	62705.9	988.1	158.6	0	18461.5
	2035 DS	71157	1248.8	250.5	0	21221.8
	Difference	13.5\%	26.4\%	57.9\%	0.0\%	15.0\%
IP	2035 DM	64180.5	920.3	129.4	0	20147.1
	2035 DS	71678.3	1197.3	207.2	51.2	22824
	Difference	11.7\%	30.1\%	60.1\%		13.3\%
PM Peak	2035 DM	72302.4	1085.8	167.9	0	22309.9
	2035 DS	80983.2	1421.8	268.2	59.9	25305.4
	Difference	12.0\%	30.9\%	59.7\%		13.4\%

Note: The data contained in the table are presented as passenger car units (pcus) as per the industry standard methodology. The data contained in the table refer to the simulated time periods only.

The above table shows that, compared to the 2019 Base year results
B There is similar level of growth in total trips in each of the three-time periods. The maximum increase is observed during the AM peak. PM and Inter-peak show similar levels of growth in trips on the network.
B The greatest increase in Transient Queuing on the Network is observed in the IP peak hour which is marginally more than the PM peak.
\& The greatest increase in Total distance travelled on the Network is observed in the AM peak hour.

6.4.2. Traffic Flows Difference (2035 DS)

The impact of the developments included within the 2035 DS scenario compared against the respective 2035DM scenario is shown in the plots below for the study area.

Figure 6-5, Figure 6-6 and Figure 6-7 show the flow difference plots for Catterick for the AM, IP and PM peak hour respectively (an increase in traffic flow is indicated in red and a decrease in blue).

Figure 6-5 - Flow difference plot for AM peak hour-, 2035 DS

During the AM peak hour, within the simulation area, it can be observed from the above figure that the model predicts considerable increase in traffic flows along all the major roads in the simulation area. This increase can be attributed to the developments included within the DS scenario.

Figure 6-6 - Flow difference plot for Average IP hour, 2035 DS

During the average Inter peak hour, within the simulation area, it can be observed from the above figure that the model predicts considerable increase in traffic flows along all the major roads in the simulation area. This increase can be attributed to the developments included within the DS scenario.

The model predicts a small decrease on the $\mathrm{A} 1(\mathrm{M})$ in the southbound direction.

Figure 6-7 - Flow difference plot for PM peak hour, 2035 DS

During the PM peak hour, within the simulation area, it can be observed from the above figure that the model predicts considerable increase in traffic flows along all the major roads in the simulation area. This increase can be attributed to the developments included within the DS scenario.

The model predicts a slightly higher decrease on the $\mathrm{A} 1(\mathrm{M})$ in the southbound direction compared to the interpeak. This can be attributed to the increase in delay at the left turn at the junction of A6136 Catterick Road / A6055. The model predicts re-routing of this delayed traffic along A6136 Leeming Lane to travel southbound along A6055.

6.5. COMPARISON OF JOURNEY TIME RESULTS 2035 DS

For 2019 Base year model a total of 5 bi-directional journey time routes were defined which cover all the key routes within the study area.

The journey times along these routes has been estimated from the 2035 DS SATURN model which takes into account the changes in network due to proposed developments, traffic flows and associated delays.

Journey times for selected routes across Catterick in the 2035 DS scenario have been compared with the 2035 DM. The differences for the AM, IP and PM peak hours respectively are summarised in the tables below.

Broadly, in the 2035 DS scenario, it can be observed that journey times show a considerable increase against the 2035 DM scenario results.

Table 6-9 - Comparison of Journey Times, AM peak hour, 2035 DS scenario

No	Route Description	Dir	Observed Journey Time (hh:mm:ss)			
			2035 DM	2035 DS	Diff (sec)	\%Diff
1	Range Road/A6136	EB	00:14:14	00:14:55	00:00:41	4.8\%
		WB	00:14:27	00:16:08	00:01:41	11.6\%
2	A6136/Scotton Road/Bedale Road	NB	00:06:53	00:07:37	00:00:45	10.8\%
		SB	00:06:44	00:07:29	00:00:45	11.2\%
3	James Lane/Horne Road/Byng Road/Hispwell Road	NB	00:08:31	00:09:11	00:00:40	7.9\%
		SB	00:08:28	00:09:08	00:00:39	7.8\%
4	Unnamed Road/Moor Lane/ Tunstall Road	EB	00:08:41	00:08:46	00:00:05	0.9\%
		WB	00:08:48	00:08:55	00:00:06	1.2\%
5	A6136	NB	00:04:39	00:04:44	00:00:05	1.9\%
		SB	00:03:37	00:03:40	00:00:03	1.3\%

The above table shows that in the AM peak hour, a maximum increase in journey time of 11.6% can be observed for Route 1 WB and a minimum increase of 0.9% is observed for Route 4 (eastbound).

Additionally, it can be observed that in the AM peak hour, a maximum actual increase in journey time of 101 seconds can be observed for Route 1 (westbound).

The following routes show an increase of more than 60 seconds:
B Route 1 (westbound) - Range Road/A6136.
No routes showed an overall decrease in journey time.

The table below shows that in the Inter peak hour, a maximum increase in journey time of 10.8% can be observed for Route 2 (southbound); and a minimum increase of 0.4% is observed for Route 4 (both directions).
Additionally, it can be observed that in the average IP peak hour, a maximum increase in journey time of 73 seconds can be observed for Route 1 (westbound) from Gatherly Road.

The following routes show an increase of more than 60 seconds:
B Route 1 (westbound) - Range Road/A6136.
No routes showed an overall decrease in journey time.

Table 6-10 - Comparison of Journey Times, IP peak hour- 2035 DS scenario

| No | Route Description | | Direction | Observed Journey Time (hh:mm:ss) | | |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 2035 DS | Diff (sec) | \%Diff |
| 1 | Range Road/A6136 | EB | $00: 14: 17$ | $00: 15: 01$ | $00: 00: 43$ | 5.1% |
| | | WB | $00: 13: 10$ | $00: 14: 24$ | $00: 01: 13$ | 9.3% |
| 2 | A6136/Scotton Road/Bedale Road | NB | $00: 07: 00$ | $00: 07: 38$ | $00: 00: 39$ | 9.2% |
| | | SB | $00: 06: 44$ | $00: 07: 28$ | $00: 00: 44$ | 10.8% |
| 3 | James Lane/Horne Road/Byng Road/Hispwell Road | NB | $00: 08: 06$ | $00: 08: 26$ | $00: 00: 20$ | 4.1% |
| | | SB | $00: 08: 19$ | $00: 08: 49$ | $00: 00: 30$ | 6.0% |
| 4 | Unnamed Road/Moor Lane/ Tunstall Road | EB | $00: 08: 40$ | $00: 08: 42$ | $00: 00: 02$ | 0.5% |
| | | WB | $00: 08: 44$ | $00: 08: 47$ | $00: 00: 03$ | 0.5% |
| 5 | A6136 | NB | $00: 04: 28$ | $00: 04: 33$ | $00: 00: 06$ | 2.1% |

The above table shows that in the PM peak hour, a maximum increase in journey time of 15.0% can be observed for Route 2 (southbound); and a minimum increase of 1.1% is observed for Route 4 (westbound).

Additionally, it can be observed from the above table that in the PM peak hour, a maximum increase in journey time of 99 seconds can be observed for Route 1 (westbound).
The following routes show an increase of more than 60 seconds:
B Route 1 (eastbound) - Range Road/A6136
B Route 1 (westbound) - Range Road/A6136.
Route 2 SB and Route 3 SB show an increase of 57 and 53 sec; just under 1 minute.
No routes showed an overall decrease in journey time.
Table 6-11 - Comparison of Journey Times, PM peak hour - 2035 DS scenario

No	Route Description		Direction	Observed Journey Time (hh:mm:ss)		
			2035 DM	2035 DS	Diff (sec)	\%Diff
1	Range Road/A6136	EB	$00: 14: 54$	$00: 16: 02$	$00: 01: 08$	7.7%
		WB	$00: 14: 33$	$00: 16: 12$	$00: 01: 39$	11.4%
2	A6136/Scotton Road/Bedale Road	NB	$00: 06: 58$	$00: 07: 40$	$00: 00: 42$	10.0%
		SB	$00: 06: 54$	$00: 07: 56$	$00: 01: 02$	15.0%
3	James Lane/Horne Road/Byng Road/Hispwell Road	NB	$00: 08: 10$	$00: 08: 33$	$00: 00: 24$	4.8%
		SB	$00: 08: 31$	$00: 09: 25$	$00: 00: 54$	10.5%
4	Unnamed Road/Moor Lane/ Tunstall Road	EB	$00: 08: 43$	$00: 08: 50$	$00: 00: 06$	1.2%
		WB	$00: 08: 47$	$00: 08: 53$	$00: 00: 06$	1.1%

| 5 | A6136 | NB | $00: 04: 38$ | $00: 04: 43$ | $00: 00: 05$ | 1.9% |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | SB | $00: 03: 38$ | $00: 03: 44$ | $00: 00: 06$ | 2.9% |

The plots showing comparison of each journey time route between 2035DM and 2035 DS for the AM, IP and PM peak hour are appended in Appendix F respectively.

6.6. HIGH LEVEL IDENTIFICATION OF POTENTIAL JUNCTIONS WITH OPERATIONAL ISSUES

This section aims to identify the junctions where there is a potential to experience operation issues due to the growth on the network in 2035 DS scenario.

Volume over Capacity (VOC) is a ratio which can be used to assess the level of performance of a junction. The VOC at selected junctions in Catterick has been extracted for 2035 DM scenario.
SATURN is a strategic modelling software, which assigns traffic on the model network based on land use changes. The junction VOC values calculated by SATURN are indicative of their operational capacity; however, this is suitable for the high-level assessment of impacts of developments and network changes.

For a more accurate operational assessment of these junctions, use of industry standard software (e.g. JUNCTIONS 9 for priority controlled junction and LINSIG for signal controlled junctions) is recommended which enables finer detail on factors such as junction layouts, lane utilisation and signal operation to be modelled and would be used as part of the junction design process.

For priority controlled junction it is normally accepted that a VOC value of 0.85 or lower can confidently be considered to have adequate capacity to accommodate the predicted traffic demand.

For a signalised junction it is normally accepted that any arm which is reported to have a VOC value of 90% or lower can confidently be considered to have adequate capacity to accommodate the predicted traffic demand.
The 2035 DS run has been used to identify junctions where any turning movement is predicted to operate over 80% VOC.
Figure 6-8 shows the location of these junctions on a geographical background and Table 6-12 provides a list of the junctions identified using the above methodology.

Figure 6-8 Location of junctions identified

Table 6-12-Junctions identified for operational assessments

Sr no	Junction description	Type	No. of arms		VOC predicted from SATURN		
				AM	IP	PM	
1	Byng Rd/Catterick Rd/Horne Rd	Signalised		4	90%	95%	97%
2	Gatherly Rd/Station Rd/B6271	Signalised	4	60%	58%	85%	
3	Catterick Rd/Colburn Ln/Unnamed Rd	Roundabout	4	90%	70%	82%	
4	Range Rd/Ava Rd	Priority	3	96%	49%	83%	
5	Catterick Rd/Unnamed Rd	Priority	3	75%	62%	70%	
6	Catterick Rd/A6055	Priority	3	87%	91%	103%	

The detailed junction analysis for the junctions identified above for further analysis is included in a separate Junction Capacity assessment report.
The report also identifies mitigation measures where required and the potential cost of the identified mitigation measures.

7. SUMMARY

In May 2018, NYCC and RDC commissioned WSP to test a 2035 DM scenario for year 2035; in accordance with RDC's Local Plan.

This includes a masterplan for the growth of Catterick Garrison and to test the transport impacts of the proposed development of sites in Catterick Garrison.

This report summarises the finding for two future year scenarios as follows
B 2035 DM scenario which includes the planned development in the Local Plan period and assess the impact of these planned developments within the simulation area upto year 2035; and
B 2035 DS scenario which includes selected proposed major developments in the Local Plan period and assess the impact of these developments within the simulation area upto year 2035.

This document reports on the traffic modelling and analysis undertaken and the resulting outputs associated with the development of the future year reference forecast scenarios for year 2035. Specifically, this report describes the impact of changes due to selected major developments most likely to be developed by year 2035 on the highway network in the various strategies and developments, in highway performance terms, both on the local network and on key individual junctions within the town centre.

The analysis considers a forecast year of 2035 Do-minimum and 2035 Do-something scenarios for the AM, IP and PM peak hours.

The traffic modelling for 2035 DM scenario shows that the addition of developments considered as part of the 2035 DM scenario will increase traffic on the network when compared to 2019 Base year and result in:

B More queueing;
B Increased congestion;
B Lengthier travel times;
B Lengthier travel distances.
The traffic flows increase on most of the links in the simulation area when compared with the 2019 base year traffic flows.

The traffic modelling for 2035 Ds scenario shows that the addition of developments considered as part of the 2035 DS scenario will considerably increase traffic on the network when compared to 2019 Base year and will result in considerably higher queuing, congestion, lengthier travel times and travel distances compared to the 2035 DM scenario.

For the 2019 Base year model a total of 5 bi-directional journey time routes were defined which cover all the key routes within the study area. The journey times along these routes have been calculated for the 2035 DM model.

The results indicate that broadly the journey times on these routes across the network will increase marginally in all time periods in the 2035 DM scenario.

In the 2035 DS scenario, the journey times along some of these routes are predicted to increase considerably.

A high-level impact assessment of the additional traffic generated by the planned developments onto the local highway network has been undertaken using the volume over capacity predictions from 2035 DS scenario.

This exercise highlighted six junctions within the simulation area which were recommended for further analysis using appropriate junction modelling software. The detailed junction analysis for these junctions is included in a separate Junction Capacity assessment report.

The report also identifies mitigation measures where required and the potential cost of the identified mitigation measures.

Appendix A

DEVELOPMENT LOG

Appendix B

TRICS REPORT

TRIP RATE CALCULATI ON SELECTION PARAMETERS:

Land Use : 06 - HOTEL, FOOD \& DRINK
Category : A - HOTELS

VEHI CLES

Selected regions and areas:
02 SOUTH EAST
BU BUCKINGHAMSHIRE 1 days
03 SOUTH WEST
GS GLOUCESTERSHIRE 1 days
WL WILTSHIRE 2 days
04 EAST ANGLIA NF NORFOLK 1 days
07 YORKSHIRE \& NORTH LI NCOLNSHIRE NY NORTH YORKSHIRE 1 days
09 NORTH
CB CUMBRIA 1 days
10 WALES
WR WREXHAM 1 days
11 SCOTLAND
AG ANGUS 1 days
HI HIGHLAND 2 days
This section displays the number of survey days per TRICS \circledR^{\circledR} sub-region in the selected set

Secondary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.
Parameter: Number of bedrooms
Actual Range: $\quad 4$ to 139 (units:)

Range Selected by User: 4 to 380 (units:)
Parking Spaces Range:
All Surveys Included
Public Transport Provision:
Selection by: Include all surveys
Date Range: $\quad 01 / 01 / 11$ to $23 / 10 / 18$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	1 days
Tuesday	3 days
Wednesday	2 days
Thursday	3 days
Friday	2 days

This data displays the number of selected surveys by day of the week.
Selected survey types:

Manual count	11 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Town Centre
Edge of Town Centre 2
Suburban Area (PPS6 Out of Centre) 1
Edge of Town 3
Free Standing (PPS6 Out of Town) 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone
3
Built-Up Zone
3
Out of Town 2
High Street
No Sub Category

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:

Not Known	1 days
A3	1 days
C1	9 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS $®^{\circledR}$.

Population within 1 mile:

1,000 or Less	1 days
5,001 to 10,000	4 days
10,001 to 15,000	1 days
20,001 to 25,000	2 days
25,001 to 50,000	3 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	1 days
25,001 to 50,000	3 days
50,001 to 75,000	1 days
75,001 to 100,000	5 days
100,001 to 125,000	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	3 days
1.1 to 1.5	8 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
11 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present
11 days
This data displays the number of selected surveys with PTAL Ratings.

1 AG-06-A-01
BOUTI QUE B\&B
CLIFFBURN ROAD
ARBROATH
HAYSHEAD
Edge of Town
Residential Zone
Total Number of bedrooms: Survey date: TUESDAY
2 BU-06-A-02
NEW ROAD
AYLESBURY
WESTON TURVILLE
Edge of Town
Out of Town
Total Number of bedrooms: Survey date: WEDNESDAY
3 CB-06-A-01 HOTEL
ENGLISH STREET
CARLISLE
Town Centre
High Street
Total Number of bedrooms:
Survey date: MONDAY
4 GS-06-A-02 PREMIER INN
GLOUCESTER ROAD
CHELTENHAM SPA
SAINT MARKS
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Number of bedrooms:
Survey date: THURSDAY
5 HI-06-A-04
HOTEL
ACADEMY STREET
INVERNESS

Town Centre
High Street Total Number of bedrooms: Survey date: FRIDAY
6 HI-06-A-05
BEST WESTERN
NESS WALK
INVERNESS
Edge of Town Centre
Built-Up Zone
Total Number of bedrooms:
Survey date: THURSDAY
7 NF-06-A-03
HOTEL
4 MARINE PARADE
GREAT YARMOUTH

Town Centre
Built-Up Zone
Total Number of bedrooms:
Survey date: FRIDAY
8 NY-06-A-01
ASCEND HOTEL
PARK PARADE
HARROGATE
Edge of Town Centre
Residential Zone
Total Number of bedrooms: Survey date: TUESDAY

ANGUS

Survey Type: MANUAL BUCKI NGHAMSHIRE

Survey Type: MANUAL CUMBRIA

Survey Type: MANUAL GLOUCESTERSHI RE

Survey Type: MANUAL HI GHLAND

Survey Type: MANUAL HI GHLAND

Survey Type: MANUAL NORFOLK

Survey Type: MANUAL NORTH YORKSHIRE

Survey Type: MANUAL

LIST OF SITES relevant to selection parameters (Cont.)

9 WL-06-A-02
HOLI DAY INN EXPRESS
BRIDGE STREET
SWINDON
Town Centre
Built-Up Zone
Total Number of bedrooms: Survey date: WEDNESDAY

10
WL-06-A-03 TRAVELODGE
LAWRENCE HILL
WI NCANTON
Edge of Town
No Sub Category
Total Number of bedrooms:
Survey date: TUESDAY
11 WR-06-A-02 HOTEL
WREXHAM ROAD
NEAR WREXHAM
HOLT
Free Standing (PPS6 Out of Town)
Out of Town
Total Number of bedrooms: Survey date: THURSDAY 06/10/11

37

WI LTSHI RE

134
27/11/13 Survey Type: MANUAL WI LTSHIRE

Survey Type: MANUAL

WREXHAM

Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 06 - HOTEL, FOOD \& DRINK/A - HOTELS
VEHI CLES

Calculation factor: 1 BEDRMS

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
4-139 (units:)
Number of weekdays (Monday-Friday):
01/01/11-23/10/18
Number of Saturdays:
11
Number of Sundays:
0
Surveys automatically removed from selection:
Surveys manually removed from selection:
This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{8}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TIME

00:00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATEGRAPH-ARRIVALS O6-HOTEL, FOOD\& CRINK A-HOTES V日IICLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TIME

00: 00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATEGRAPH-DEARTURES O6-HOTEL,FOOD\& DRINK A-HOTELS V日ICLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TIME RATE \% TRIPRATEGRAPH-TOTALS 06-HOTE,FOOD\&DRINK A-HOTES VEHCLES
00:00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04: 00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:

```
Land Use : 07-LEISURE
Category : C - LEISURE CENTRE
VEHI CLES
```

Selected regions and areas:
03 SOUTH WEST
DV DEVON 1 days
04 EAST ANGLIA
CA CAMBRIDGESHIRE 1 days
$07 \quad \begin{array}{ll}\text { YORKSHIRE \& NORTH LI NCOLNSHIRE } \\ & \text { NY NORTH YORKSHIRE }\end{array}$
$\begin{array}{lll}\text { NY NORTH YORKSHIRE } & 1 \text { days } \\ \text { WY WEST YORKSHIRE } & 1 \text { days }\end{array}$
09 NORTH
CB CUMBRIA 1 days
10 WALES
WR WREXHAM 1 days
11 SCOTLAND
AG ANGUS 1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Secondary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	1100 to 6133 (units: sqm)
Range Selected by User:	360 to 17000 (units: sqm)
Parking Spaces Range:	All Surveys Included

Public Transport Provision:
Selection by: Include all surveys
Date Range: 01/01/11 to 01/05/19
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Tuesday	1 days
Wednesday	3 days
Thursday	3 days

This data displays the number of selected surveys by day of the week.

Selected survey types:	7 days
Manual count	0 days
Directional ATC Count	

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:

Town Centre 1
Edge of Town Centre 4
Suburban Area (PPS6 Out of Centre) 1
Edge of Town 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone 2
Retail Zone 1
Built-Up Zone 2
No Sub Category 2
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:
D2
7 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ®.

Population within 1 mile:

1,001 to 5,000	1 days
5,001 to 10,000	3 days
10,001 to 15,000	1 days
25,001 to 50,000	2 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,001 to 25,000	2 days
25,001 to 50,000	3 days
75,001 to 100,000	2 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	3 days
1.1 to 1.5	4 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
 No

7 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:
No PTAL Present 7 days
This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters
1 AG-07-C-01 LEISURE CENTRE

ANGUS

A92 MONTROSE ROAD
ARBROATH
WARDDYKES
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 4738 sqm Survey date: WEDNESDAY 23/05/12
2 CA-07-C-02 LEISURE CENTRE
BACK LANE
CAMBOURNE
Edge of Town
Residential Zone
Total Gross floor area: 1502 sqm
Survey date: THURSDAY 07/06/18
3 CB-07-C-03
SWI MMI NG \& FITNESS CENTRE
JAMES STREET
CARLISLE
Edge of Town Centre
Built-Up Zone
Total Gross floor area: 2500 sqm Survey date: WEDNESDAY 22/06/16
4 DV-07-C-01 LEISURE CENTRE
COWICK STREET
EXETER
Edge of Town Centre
Retail Zone
Total Gross floor area: 6133 sqm
Survey date: THURSDAY 28/11/13
5 NY-07-C-01 SWIMMI NG POOL
MILL LANE
PICKERING
Edge of Town Centre
No Sub Category
Total Gross floor area: 1100 sqm Survey date: THURSDAY 13/10/11
6 WR-07-C-01 SWIMMI NG POOL
BODHYFRYD
WREXHAM
Town Centre
Built-Up Zone
Total Gross floor area:
Survey date: WEDNESDAY 12/10/11 Survey Type: MANUAL
7 WY-07-C-02 LEISURE CENTRE
LODGE LANE
WETHERBY

Edge of Town Centre
No Sub Category
Total Gross floor area:
2182 sqm Survey date: TUESDAY 20/09/16

Survey Type: MANUAL CUMBRIA

Survey Type: MANUAL DEVON

Survey Type: MANUAL CAMBRI DGESHI RE

Survey Type: MANUAL NORTH YORKSHIRE

Survey Type: MANUAL WREXHAM WEST YORKSHIRE

Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 07 - LEISURE/C - LEISURE CENTRE
VEHI CLES
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	3	3344	0.269	3	3344	0.030	3	3344	0.299
07:00-08:00	7	2994	0.582	7	2994	0.196	7	2994	0.778
08:00-09:00	7	2994	0.668	7	2994	0.449	7	2994	1.117
09:00-10:00	7	2994	0.978	7	2994	0.577	7	2994	1.555
10:00-11:00	7	2994	0.783	7	2994	0.692	7	2994	1.475
11:00-12:00	7	2994	0.639	7	2994	0.978	7	2994	1.617
12:00-13:00	7	2994	0.692	7	2994	0.735	7	2994	1.427
13:00-14:00	7	2994	0.744	7	2994	0.577	7	2994	1.321
14:00-15:00	7	2994	0.639	7	2994	0.620	7	2994	1.259
15:00-16:00	7	2994	0.892	7	2994	0.721	7	2994	1.613
16:00-17:00	7	2994	1.422	7	2994	1.079	7	2994	2.501
17:00-18:00	7	2994	1.618	7	2994	1.455	7	2994	3.073
18:00-19:00	7	2994	1.618	7	2994	1.603	7	2994	3.221
19:00-20:00	7	2994	0.902	7	2994	1.226	7	2994	2.128
20:00-21:00	7	2994	0.577	7	2994	1.226	7	2994	1.803
21:00-22:00	6	3242	0.113	6	3242	0.704	6	3242	0.817
22:00-23:00	2	3769	0.000	2	3769	0.212	2	3769	0.212
23:00-24:00	1	4738	0.000	1	4738	0.000	1	4738	0.000
Total Rates:			13.136			13.080			26.216

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
1100-6133 (units: sqm)
Survey date date range: 01/01/11-01/05/19
Number of weekdays (Monday-Friday):
Number of Saturdays:
0
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:
This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TMME

00:00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TIME

00: 00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11: 00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE

0.030
0.196
0.449
0.577
0.692
0.978
0.735
0.577
0.620
0.721
1.079
1.455
1.603
1.226
1.226
0.704
0.212
\% TRIPRATEGRAPH - DEPARTURES O7-LEISURE C-LESURECENTRE VEHCLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TME

00: 00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE

0.299
0.778
1.117
1.555
1.475
1.617
1.427
1.321
1.259
1.613
2.501
3.073
3.221
2.128
1.803
0.817
0.212
\% TRIPRATE GRAPH - TOTALS O7-IFSURE C-IEISURE CENTRE VEHICLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:

This section displays the number of survey days per TRICS ${ }^{\circledR}$ sub-region in the selected set

Secondary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	200 to 1592 (units: sqm)
Range Selected by User:	40 to 2709 (units: sqm)
Parking Spaces Range:	All Surveys Included

Public Transport Provision:
Selection by: Include all surveys
Date Range: $\quad 01 / 01 / 11$ to 29/04/19
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:
Monday 2 days
Tuesday 2 days
Wednesday 5 days
Thursday 1 days
Friday 5 days
This data displays the number of selected surveys by day of the week.

Selected survey types:	
Manual count	15 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 5
Suburban Area (PPS6 Out of Centre) 2
Edge of Town 2
Neighbourhood Centre (PPS6 Local Centre) 5
Free Standing (PPS6 Out of Town) 1

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:
D1 15 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ${ }^{\circledR}$.

Population within 1 mile:

1,000 or $L e s s$	
1,001 to 5,000	4 days
5,001 to 10,000	2 days
10,001 to 15,000	4 days
15,001 to 20,000	1 days
20,001 to 25,000	1 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

5,000 or Less	1 days
5,001 to 25,000	4 days
25,001 to 50,000	4 days
50,001 to 75,000	1 days
75,001 to 100,000	2 days
100,001 to 125,000	3 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	5 days
1.1 to 1.5	8 days
1.6 to 2.0	2 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:

Yes	1 days
No	14 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present 15 days
This data displays the number of selected surveys with PTAL Ratings.

1 CC-05-G-01
GP SURGERY
SLEATY ROAD
CARLOW
CARLOW BUSINESS PARK
Edge of Town
Commercial Zone
Total Gross floor area: 1500 sqm Survey date: FRIDAY 10/06/11
2 CH-05-G-03
GP SURGERY
HEATH LANE
CHESTER
BOUGHTON HEATH
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area Survey date: TUESDAY
3 DE-05-G-02
GP SURGERY
MOUNTSANDEL ROAD
COLERAINE
Edge of Town Centre
Built-Up Zone
Total Gross floor area
Survey date: FRIDAY
1220 sqm
25/10/13
4 DL-05-G-03 GP SURGERY
THE DUNES
PORTMARNOCK
BURROW
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area:
230 sqm Survey date: WEDNESDAY 20/06/18
5 ES-05-G-02 MEDI CAL CENTRE
JUZIERS DRIVE
EAST HOATHLY
Neighbourhood Centre (PPS6 Local Centre)
Village
Total Gross floor area:
215 sqm
Survey date: WEDNESDAY
13/07/16
6 FI-05-G-02 GP SURGERY
MAIN ROAD
NEAR DUNFERMLINE
CHARLESTOWN
Neighbourhood Centre (PPS6 Local Centre) Village
Total Gross floor area
325 sqm
29/05/15
7 FI-05-G-03
GP SURGERY
IZATT AVENUE
DUNFERMLINE
HOSPITAL HILL
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area:
425 sqm
Survey date: MONDAY 21/03/16
8 HI-05-G-01 GP SURGERY
BALLIFEARY LANE
INVERNESS
Edge of Town Centre
No Sub Category
Total Gross floor area: Survey date: MONDAY
9 LE-05-G-02 GP SURGERY
THE SANDS
NEAR MELTON MOWBRAY
LONG CLAWSON
Neighbourhood Centre (PPS6 Local Centre)
Village
Total Gross floor area:
363 sqm
29/11/16

CARLOW

Survey Type: MANUAL CHESHIRE

Survey Type: MANUAL DUBLI N

Survey Type: MANUAL EAST SUSSEX

Survey Type: MANUAL FIFE

Survey Type: MANUAL FIFE

Survey Type: MANUAL HI GHLAND

LIST OF SITES relevant to selection parameters (Cont.)
$10 \quad \begin{aligned} & \text { NY-05-G-01 } \\ & \\ & \text { CHAPEL STRE }\end{aligned}$
CHAPEL STREET
THIRSK
Edge of Town Centre
No Sub Category
Total Gross floor area: Survey date: WEDNESDAY
11 NY-05-G-02 GP SURGERY
ASH TREE ROAD
KNARESBOROUGH
Edge of Town Centre
Residential Zone
Total Gross floor area: 416 sqm
Survey date: WEDNESDAY 28/09/16
12 RO-05-G-01 GP SURGERY
VALLEY COURT
ATHLONE
BUNNAVALLY
Edge of Town
Residential Zone
Total Gross floor area:
Survey date: WEDNESDAY 24/09/14
13 SM-05-G-01
MANTLE STREET
NEAR TAUNTON
WELLINGTON
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: Survey date: FRIDAY 06/07/12
14 WK-05-G-01
COURT STREET
LEAMINGTON SPA
Edge of Town Centre
No Sub Category
Total Gross floor area:
Survey date: THURSDAY
15 WK-05-G-02
NEAR BIDFORD-ON-AVON
Free Standing (PPS6 Out of Town)
Out of Town
Total Gross floor area:
1315 sqm 29/06/18 Survey date: FRIDAY

200 sqm

1592 sqm

530 sqm 25/10/12

NORTH YORKSHI RE

 12/10/11Survey Type: MANUAL ROSCOMMON

Survey Type: MANUAL

 NORTH YORKSHIRESurvey Type: MANUAL

SOMERSET

Survey Type: MANUAL WARWI CKSHI RE

Survey Type: MANUAL

WARWI CKSHI RE

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 05-HEALTH/G - GP SURGERIES
VEHI CLES
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00									
07:00-08:00	14	757	0.850	14	757	0.170	14	757	1.020
08:00-09:00	15	734	2.997	15	734	1.471	15	734	4.468
09:00-10:00	15	734	3.815	15	734	3.015	15	734	6.830
10:00-11:00	15	734	3.778	15	734	3.978	15	734	7.756
11:00-12:00	15	734	3.361	15	734	3.624	15	734	6.985
12:00-13:00	15	734	2.380	15	734	3.379	15	734	5.759
13:00-14:00	15	734	1.680	15	734	1.599	15	734	3.279
14:00-15:00	15	734	3.669	15	734	2.988	15	734	6.657
15:00-16:00	15	734	3.797	15	734	3.751	15	734	7.548
16:00-17:00	15	734	2.816	15	734	3.324	15	734	6.140
17:00-18:00	15	734	1.326	15	734	2.316	15	734	3.642
18:00-19:00	14	757	0.179	14	757	0.944	14	757	1.123
19:00-20:00									
20:00-21:00									
21:00-22:00									
22:00-23:00									
23:00-24:00									
Total Rates:			30.648			30.559			61.207

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
200-1592 (units: sqm)
Number of weekdays (Monday-Friday):
01/01/11-29/04/19
Number of Saturdays:
15
Number of Sundays:
0
Surveys automatically removed from selection:
Surveys manually removed from selection:
This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TIME

00:00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATEGRAPH-ARRIVALS 05-HEALTH G-GPSURGERIES VEHCLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TME

00:00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATE GRAPH-DEPARTURES 05-HEALTH G-G SURGERIES VEHICLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TME

00:00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATEGRAPH-TOTALS 05-HEALTH G-GPSURGRIES VEHICES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:

Calculation Reference: AUDIT-100323-190827-0825

```
Land Use : 03-RESIDENTIAL
Category : G - STUDENT ACCOMMODATION
VEHI CLES
```

Selected regions and areas:
03 SOUTH WEST
BA BATH \& NORTH EAST SOMERSET 1 days
DV DEVON 2 days
09 NORTH
DH DURHAM 1 days

This section displays the number of survey days per TRICS ${ }^{\circledR}$ sub-region in the selected set

Secondary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Number of residents
Actual Range:	110 to 291 (units:)
Range Selected by User:	15 to 1612 (units:)
Parking Spaces Range:	All Surveys Included

Public Transport Provision:
Selection by: Include all surveys
Date Range: $\quad 01 / 01 / 11$ to $18 / 10 / 18$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:	
Wednesday	1 days
Thursday	3 days

This data displays the number of selected surveys by day of the week.

Selected survey types:	
Manual count	4 days
Directional ATC Count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Edge of Town Centre 1
Suburban Area (PPS6 Out of Centre) 2
Edge of Town 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone
2
No Sub Category
2
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:

$$
4 \text { days }
$$

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ${ }^{\circledR}$.

Secondary Filtering selection (Cont.):

Population within 1 mile:

1,001 to 5,000	1 days
15,001 to 20,000	2 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:

25,001 to 50,000	1 days
100,001 to 125,000	3 days

100,001 to $125,000 \quad 3$ days
This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	1 days
1.1 to 1.5	3 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:

No 4 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:
No PTAL Present
4 days
This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters
1 BA-03-G-01 STUDENT FLATS

BATH \& NORTH EAST SOMERSET

LOWER BRISTOL ROAD

BATH

Suburban Area (PPS6 Out of Centre)

No Sub Category
Total Number of residents:
Survey date: THURSDAY 04/10/18
2 DH-03-G-01
STUDENT FLATS
ASHWOOD
DURHAM
GILESGATE
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Number of residents:
Survey date: THURSDAY
168
18/10/18 Survey Type: MANUAL DEVON
COWLEY BRIDGE ROAD
EXETER
Edge of Town No Sub Category Total Number of residents: Survey date: WEDNESDAY

110 05/10/11
4 DV-03-G-04
BONHAY ROAD
EXETER
Edge of Town Centre
Residential Zone
Total Number of residents:
241
28/11/13 Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 03 - RESIDENTIAL/G - STUDENT ACCOMMODATION

VEHI CLES

Calculation factor: 1 RESI DE

BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. RESIDE	Trip Rate	No. Days	Ave. RESIDE	Trip Rate	No. Days	Ave. RESIDE	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	1	241	0.000	1	241	0.000	1	241	0.000
07:00-08:00	4	203	0.004	4	203	0.004	4	203	0.008
08:00-09:00	4	203	0.006	4	203	0.005	4	203	0.011
09:00-10:00	4	203	0.007	4	203	0.004	4	203	0.011
10:00-11:00	4	203	0.015	4	203	0.010	4	203	0.025
11:00-12:00	4	203	0.020	4	203	0.025	4	203	0.045
12:00-13:00	4	203	0.009	4	203	0.009	4	203	0.018
13:00-14:00	4	203	0.010	4	203	0.007	4	203	0.017
14:00-15:00	4	203	0.010	4	203	0.015	4	203	0.025
15:00-16:00	4	203	0.014	4	203	0.017	4	203	0.031
16:00-17:00	4	203	0.016	4	203	0.012	4	203	0.028
17:00-18:00	4	203	0.002	4	203	0.011	4	203	0.013
18:00-19:00	4	203	0.007	4	203	0.010	4	203	0.017
19:00-20:00	3	233	0.007	3	233	0.006	3	233	0.013
20:00-21:00	3	233	0.014	3	233	0.011	3	233	0.025
21:00-22:00	2	205	0.005	2	205	0.007	2	205	0.012
22:00-23:00									
23:00-24:00									
Total Rates:			0.146			0.153			0.299

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
110-291 (units:)
Number of weekdays (Monday-Friday):
01/01/11-18/10/18
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
1
Surveys manually removed from selection:
This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{8}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TMME

00: 00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATEGRAPH - ARRIVALS 03-RESIDENTIAL G-STUDENT ACCOMMODATION VEMICLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TMME

00: 00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE \% TRIPRATEGRAPH-DEPARTLRES 03-RESIDENTIAL G-STUDENTACCOMMODATION VEHICLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

TMME

00: 00-01:00 01:00-02:00 02:00-03:00 03:00-04:00 04:00-05:00 05:00-06:00 06:00-07:00 07:00-08:00 08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 22:00-23:00 23:00-24:00

RATE

0.008
0.011
0.011
0.025
0.045
0.018
0.017
0.025
0.031
0.028
0.013
0.017
0.013
0.025
0.012
\% TRIPRATE GRAPH - TOTALS 03-RESIDENTIAL G-STLDENTACCOMMODATION VEHCLES

This graph is a visual representation of the trip rate calculation results screen. The same time periods and trip rates are displayed, but in addition there is an additional column showing the percentage of the total trip rate by individual time period, allowing peak periods to be easily identified through observation. Note that the type of count and the selected direction is shown at the top of the graph.

Appendix C

TRAFFIC GROWTH

C1-Districts defined for aggregating the zoning system

District	No
Hambleton	1
Harrogate	2
Richmondshire	3
Humberside	4
North Yorkshire	5
West Yorkshire	6
South East	7
South West	8
North East	9
North West	10

C2 - Growth factors applied to 2019 AM matrix

District	TEMPRO 7.2 OD Car Growth						NTM 2015 Dataset			
	Emp.Bus		Commute		Other		LGV		HGV	
	0	D	0	D	0	D	O	D	0	D
1	1.0400	1.0837	1.0184	1.0750	1.0758	1.0948	1.2097	1.2097	1.0202	1.0202
2	1.0623	1.0846	1.0503	1.0761	1.1011	1.1016	1.2097	1.2097	1.0202	1.0202
3	1.0553	1.0836	1.0354	1.0744	1.0821	1.0948	1.2097	1.2097	1.0202	1.0202
4	1.1130	1.1128	1.1063	1.1066	1.1290	1.1299	1.2097	1.2097	1.0202	1.0202
5	1.0788	1.0863	1.0693	1.0782	1.1015	1.1036	1.2097	1.2097	1.0202	1.0202
6	1.1317	1.1288	1.1300	1.1267	1.1678	1.1667	1.2097	1.2097	1.0202	1.0202
7	1.1060	1.1048	1.1021	1.1000	1.1810	1.1803	1.2160	1.2160	1.0430	1.0430
8	1.0983	1.0983	1.0947	1.0947	1.1388	1.1388	1.2092	1.2092	1.0102	1.0102
9	1.1238	1.1238	1.1186	1.1186	1.1302	1.1302	1.2097	1.2097	1.0202	1.0202
10	1.1086	1.1086	1.1060	1.1060	1.1265	1.1265	1.2011	1.2011	1.2011	1.2011

C3-Growth factors applied to 2019 IP matrix

District	TEMPRO 7.2 OD Car Growth						NTM 2015 Dataset			
	Emp.Bus		Commute		Other		LGV			HGV
	0	D	0	D	0	D	0	D	0	D
1	1.0656	1.0656	1.0455	1.0360	1.0865	1.0850	1.2097	1.2097	1.0202	1.0202
2	1.0716	1.0717	1.0548	1.0512	1.1036	1.1018	1.2097	1.2097	1.0202	1.0202
3	1.0682	1.0682	1.0476	1.0391	1.0859	1.0856	1.2097	1.2097	1.0202	1.0202
4	1.1059	1.1059	1.0933	1.0932	1.1296	1.1297	1.2097	1.2097	1.0202	1.0202
5	1.0769	1.0769	1.0639	1.0624	1.1023	1.1020	1.2097	1.2097	1.0202	1.0202
6	1.1225	1.1224	1.1138	1.1143	1.1762	1.1763	1.2097	1.2097	1.0202	1.0202
7	1.1021	1.1019	1.0922	1.0923	1.1882	1.1884	1.2160	1.2160	1.0430	1.0430
8	1.0939	1.0939	1.0842	1.0842	1.1432	1.1432	1.2092	1.2092	1.0102	1.0102
9	1.1141	1.1141	1.1020	1.1020	1.1303	1.1303	1.2097	1.2097	1.0202	1.0202
10	1.1002	1.1002	1.0905	1.0905	1.1288	1.1288	1.2011	1.2011	1.2011	1.2011

C4 -Growth factors applied to 2019 PM matrix

District	TEMPRO 7.2 OD Car Growth						NTM 2015 Dataset			
	Emp.Bus		Commute		Other		LGV			HGV
	0	D	0	D	0	D	0	D	0	D
1	1.0766	1.0437	1.0651	1.0096	1.0763	1.0692	1.2097	1.2097	1.0202	1.0202
2	1.0789	1.0625	1.0662	1.0410	1.0890	1.0895	1.2097	1.2097	1.0202	1.0202
3	1.0752	1.0542	1.0636	1.0247	1.0788	1.0736	1.2097	1.2097	1.0202	1.0202
4	1.1090	1.1089	1.0966	1.0964	1.1197	1.1195	1.2097	1.2097	1.0202	1.0202
5	1.0819	1.0763	1.0693	1.0606	1.0928	1.0917	1.2097	1.2097	1.0202	1.0202
6	1.1247	1.1268	1.1168	1.1200	1.1601	1.1605	1.2097	1.2097	1.0202	1.0202
7	1.1029	1.1032	1.0919	1.0939	1.1630	1.1630	1.2160	1.2160	1.0430	1.0430
8	1.0961	1.0961	1.0860	1.0860	1.1284	1.1284	1.2092	1.2092	1.0102	1.0102
9	1.1183	1.1183	1.1075	1.1075	1.1239	1.1239	1.2097	1.2097	1.0202	1.0202
10	1.1031	1.1031	1.0957	1.0957	1.1191	1.1191	1.2011	1.2011	1.2011	1.2011

Appendix D

TAFFIC FLOW PLOTS
いゝ|"

2035 DM AM peak hour - Catterick Garrison and Village

2035 DS AM peak hour - Catterick Garrison and Village

2035 DM Inter peak hour - Catterick Garrison and Village

2035 DS Inter peak hour - Catterick Garrison and Village

2035 DM PM peak hour - Catterick Garrison and Village

2035 DS PM peak hour - Catterick Garrison and Village

Appendix E

J OURNEY TIME GRAPHS - 2035 DMBASE

2035 DM AM Journey time summary graphs
Journey Time Route no 1

Journey Time Route no 2

Journey Time Route no 3

Journey Time Route no 4

Journey Time Route no 5

2035 DM IP Journey time summary graphs

Journey Time Route no 1

Journey Time Route no 2

Journey Time Route no 3

Journey Time Route no 4

Journey Time Route no 5

2035 DM PM Journey time summary graphs

Journey Time Route no 1

Journey Time Route no 2

Journey Time Route no 3

Journey Time Route no 4

Journey Time Route no 5

Appendix F

J OURNEY TIME GRAPHS 2035DS2035DM

2035 DS AM Journey time summary graphs

Journey Time Route no 1

Journey Time Route no 2

Journey Time Route no 3

Journey Time Route no 4

Journey Time Route no 5

2035 DS IP Journey time summary graphs

Journey Time Route no 1

Journey Time Route no 2

JT R2 SB

Journey Time Route no 3

Journey Time Route no 4

Journey Time Route no 5

2035 DS PM Journey time summary graphs

Journey Time Route no 1

Journey Time Route no 2

Journey Time Route no 3

Journey Time Route no 4

Journey Time Route no 5

Three White Rose Office Park
Millshaw Park Lane
Leeds
LS11 0DL

